APPENDIX C – Properties of Common Geometric Shapes Rectangle (origin of axes at centroid) $$A = bh$$ $$\overline{x} = \frac{b}{2}$$ $$\overline{y} = \frac{h}{2}$$ $$I_x = \frac{bh^3}{12}$$ $$I_y = \frac{hb^3}{12}$$ **Right Triangle** (origin of axes at vertex) $$A = \frac{bh}{2}$$ $$A = \frac{bh}{2}$$ $I_x = \frac{bh^3}{12}$ $I_y = \frac{hb^3}{12}$ $$I_y = \frac{hb^3}{12}$$ Right Triangle (origin of axes at centroid) $$\overline{x} = \frac{b}{3}$$ $$\overline{y} = \frac{h}{3}$$ $$I_x = \frac{bh^3}{36}$$ $$I_y = \frac{hb^3}{36}$$ Isosceles Triangle (origin of axes at centroid) $$A = \frac{bh}{2} \qquad \overline{x} = \frac{b}{2} \qquad \overline{y} = \frac{h}{3}$$ $$\bar{x} = \frac{b}{2}$$ $$\overline{y} = \frac{h}{3}$$ $$I_x = \frac{bh^3}{36} \qquad I_y = \frac{hb^3}{48}$$ $$I_y = \frac{hb^3}{48}$$ Circle (origin of axes at center) $$d = 2i$$ $$d = 2r \qquad A = \pi r^2 = \frac{\pi d^2}{4}$$ $$I_x = I_y = \frac{\pi r^4}{4} = \frac{\pi d^4}{64}$$ $$I_{BB} = \frac{5\pi r^4}{4} = \frac{5\pi d^4}{64}$$ Circular Ring with thickness "t" (origin of axes at center) Approximate formulas for the case when t is small $$A = 2\pi rt = \pi dt$$ $$I_x = I_y = \pi r^3 t = \frac{\pi d^3 t}{8}$$